VLSI Circuits for Cryptographic Authentication

ثبت نشده
چکیده

Nowadays, digital communication protocols rely on cryptographic mechanisms to protect sensitive information from unauthorized access and modification. Cryptographic primitives, such as hash functions, block and stream ciphers, are key components of many information security applications, employed to provide privacy, authentication, and data integrity. Following the massive differentiation of modern communication technologies, cryptography must be able to provide highlyefficient algorithms that combine strong security with optimal implementability. It becomes therefore unlikely that a single cipher or hash function would be able to meet all the constraints imposed by the wide plethora of communication protocols. Researchers and designers are thus asked to develop application-specific algorithms that are jointly optimized for security and implementation performance. This thesis is concerned with the design of very large scale integration (VLSI) circuits for cryptographic hash functions and block cipher authenticated encryption modes. We present two hash algorithms that have been submitted to the public hash competition organized by the U.S. National Institute of Standards and Technology (NIST). A complete design space exploration of their efficiency for application-specific integrated circuits (ASICs) is given. Due to our strong involvement in the competition, we further developed a uniform methodology for a fair comparison of the VLSI performance of the second round candidate algorithms. Our benchmarking framework is the result of three different research projects that culminated with the fabrication of three 0.18 μm and 90 nm ASICs, hosting the second round function cores. In the second part of this thesis, we investigate high-speed fieldprogrammable gate array (FPGA) designs of the Advanced Encryption Standard (AES) in the Galois/Counter Mode (GCM) of operation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VLSI Circuits for Cryptographic Authentication

Nowadays, digital communication protocols rely on cryptographic mechanisms to protect sensitive information from unauthorized access and modification. Cryptographic primitives, such as hash functions, block and stream ciphers, are key components of many information security applications, employed to provide privacy, authentication, and data integrity. Following the massive differentiation of mo...

متن کامل

Spice Compatible Model for Multiple Coupled Nonuniform Transmission Lines Application in Transient Analysis of VLSI Circuits

An SPICE compatible model for multiple coupled nonuniform lossless transmission lines (TL's) is presented. The method of the modeling is based on the steplines approximation of the nonuniform TLs and quasi-TEM assumptions. Using steplines approximation the system of coupled nonuniform TLs is subdivided into arbitrary large number of coupled uniform lines (steplines) with different characteristi...

متن کامل

Secure Bio-Cryptographic Authentication System for Cardless Automated Teller Machines

Security is a vital issue in the usage of Automated Teller Machine (ATM) for cash, cashless and many off the counter banking transactions. Weaknesses in the use of ATM machine could not only lead to loss of customer’s data confidentiality and integrity but also breach in the verification of user’s authentication. Several challenges are associated with the use of ATM smart card such as: card clo...

متن کامل

Process algebraic modeling of authentication protocols for analysis of parallel multi-session executions

Many security protocols have the aim of authenticating one agent acting as initiator to another agent acting as responder and vice versa. Sometimes, the authentication fails because of executing several parallel sessions of a protocol, and because an agent may play both the initiator and responder role in parallel sessions. We take advantage of the notion of transition systems to specify authen...

متن کامل

Continuous hard-to-invert functions and biometric authentication

We consider the problem of constructing continuous cryptographic primitives. We present several candidates for continuous hard-to-invert functions. To formulate these candidates, we introduce constructions based on tropical and supertropical circuits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011